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Spinodal dewetting in a volatile liquid film
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The coexistence of film domains of different thickness in an evaporating film of a polar liquid on a solid
substrate is studied using the multiscale expansion technique. The propagation speed of a straight-line front is
computed both in the quasistationary approximation and in the comoving frame. The limit of long-scale zigzag
instability is computed. The instability is observed during evaporation only and exists in a range of propagation
velocities bounded both from below and from above; during condensation, the propagating front is always
stable. Computations for a circular front yield a critical nucleation radius for a thin film and confirm the
anomalous dependence of the evaporation rate on the droplet radius observed in recent experiments.
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I. INTRODUCTION ridge formation[2,13. It was conjectured that the ridge is

A series of experiments by Lipson and his group has re.desta.bilized through a mechanism analogOUS to the Raylelgh
vealed complex behavior during dry-out of thin films of a instability of a liquid cylinder. Numerical simulations using
polar fluid (waten on an atomically smooth mica surface the common lubrication approximatidid3] reproduced the
[1-4]. The volatile film in contact with unsaturated vapor is zigzag instability of the front, which, indeed, appeared to be
bound to the substrate by both van der Waals and polatorrelated, in the limited range of parameters where the
forces, which may combine to enable two alternative stablesimulations were carried out, with the ridge formation. Nev-
film thicknesses, both falling in a nanoscopic range. Coexistertheless, the connection between the instability and ridge
ing thin and “thick” film domains have been indeed detectedformation, as well as the analogy to the Rayleigh instability,
in the experiment. Many unusual features of pattern formais open to discussion andm®t supported by the results to be
tion during evaporation may be attributed to the specific dy-described below: we shall see that a ridgaliwayspresent
namics of boundaries between these domains. in an evaporating film in the model we use, even when the

Bistable equilibrium film thicknesses can be modeled byfront is stable.
the Sharma potentigb] combining van der Waals and polar ~ Another interesting phenomenon observed in recent ex-
interactions between the fluid and substrate. Within the bistaperiments[3,4] is the coexistence of droplets of different
bility range, thedynamicsof a film can be described in terms size, defying a common notion of faster evaporation of
of “spinodal decomposition” into two stable states. In thesmaller droplets due to the Gibbs-Thomson effect. Both the
intermediate-thickness range, a flat interface becomes umnomalous dependence of the shrinkage rate on the droplet
stable. The nonlinear development of instabilities leading taadius and the contact-line dynamics different from that ob-
nucleation of “holes” and separation into “thick” and thin served in macroscopic films will be explained here as a con-
domains has been studied numerically in the two-sequence of the coexistence of thin- and “thick’-film do-
dimensionak2D) lubrication approximatiori6,7] and found mains. We shall consider the late stages of evolution of the
to follow a pattern common to many phase transition phefilm following spinodal decomposition and the formation of
nomena. Evaporation triggers spinodal decomposition afteironts. The analogy between the coexistence of domains with
bringing the film thickness into the unstable range. “Dry” two alternative thicknesses and common phase transitions in
regions nucleating during evaporation are actually thin-flm3D suggests applying the methods of the theory of phase
domains, and their subsequent growth can be seen as thansitions[14], based on the dynamics of propagation of the
motion of a front separating the thin- and “thick”-film do- interphase boundaries. The mathematical structure of dy-
mains. This relatively sharp moving front is usually identi- namic phase transition models, based on the Cahn-Hilliard
fied as a “contact-line” region, although no definite equilib-equation15], on the one side, and thin-liquid-film equations,
rium contact angle exists in the absence of a macroscopien the other side, is not so much different, as the latter re-
fluid layer. duce in the lubrication approximation to a generalized Cahn-

A driven contact line is apt to be unstable to transverseHilliard equation[16—18. A substantial difference, making
perturbations, which may cause fingering and rivulet formathe liquid-film equations technically more difficult, is in the
tion, and are ultimately responsible for the formation of com-hydrodynamic origin of the effective mobility coefficient,
plex dewetting patterns in the course of evaporation. Sucimaking it strongly dependent on the “order parameter"—film
instabilities are common to contact lines driven by variousthickness(see Sec. ) This, combined with enormous dis-
forces—e.g., gravity8—10, Marangoni forcg11] or dewet-  parity of scales of the bulk fluid and a “precursor layer”
ting [12]—and are commonly accompanied by the formationwhere molecular interactions between the fluid and substrate
of a ridge on the fluid interface behind the front. Transversas predominant, presents great theoretical and computational
instability in evaporating layers was also attributed to thechallengegsee[18,19 for recent reviews an{20] for spe-
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qifiq ap_plication to dewetting and spinodal decomposition in oh=71V - [k(h)V u] - Blu— 0, (3)
liquid films). 0 _ _ )
The dynamical problem involving a front between a thin Whereu” is chemical potential of the ambient vapor phase

and a “thick” film is essentially easier than that of coexist-2NdB is an effective rate constant; the effective mobik()

ence of a thin film and macroscopibulk) fluid, since one 'émains unchanged if viscosity of the vapor phase can be
can operate with nearly constant, though different, mobilitied'eglected. _ _

in the two domains and treat the boundary between them A convenient dimensionless form of E(B) can be ob-
using the multiscale expansion technique of the dynamié¢@ined by choosing a characteristic decay lergdi disjoin-
theory of phase transitionf21-23. Although the Sharma Ng potential (to be specn‘l_ed_ belowas the _scale of film
model gives a smooth transition between bistability and thinthicknessh and a characteristic energy densifyf molecu-
film—bulk-fluid coexistencésee Sec. Il and has been also lar interactions between the fluid and substrate as the scale of
applied to experiments involving bulk menisci rather thanchemical potentiak. The horizontal coordinatesand time
coexisting domaing24], it is the bistability region where the C€&n_be scaled in two ways. ghort horizontal length scale
essential features of Lipson’s experiments are brought forl=\0d/q is fixed by the balance between disjoining poten-
ward in a most transparent way. Applying the multiscale extial and surface tension, and determines the extent of a region
pansion technique allows us to solve the problem ana|ytiwhere the interface may be strongly curved due to interaction

cally for the essential symmetric shapes of the moving frontvith the substrate. Another horizontal scaled*?/\37 is
separating the thin and “thick” domains. We shall use it todetermined by the balance between advective mass transport
investigate the properties of solutions, including long-scaledlong the film(with k(h)=<d®) and evaporation. This scale is
zigzag instability, in a wide range of parameters, as well as tdong when evaporation is slow. The respective time scales
give a quantitative measure of the anomalous dependence &f€
the evaporation rate on the droplet radius. 2 2
T _yn o _Lp_d

T de?’ YT P g

Evolution is quasistationanyif it proceeds on a slower time
The evolution equation of aonvolatileliquid film with a  scale.

large aspect ratio written in the lubrication approximation The scale ratio
has the form of a generalized Cahn-Hilliard equation for the
conserved “order parameter’h—the film thickness c= |_ - /L :} [ Byom (4)
[17,18,28. When the film thickness is indefinite, as in dif- L T d q
fuse interface theory, it is defined as an appropriate nominal

value, usually as the position of the Gibbs surf&2@]. The Is the small parameter of the problem. We shall retain the
dynar’nic equations follow then from the conservation law: same notation for the rescaled film thickness, chemical po-

tential, and functions oh, but to avoid confusion, distin-
guish between the short-scale dimensionless coordinates and
time, x, t and the long-scale variable§ T, as well as be-

tween the respective gradient operat®rsand V. In scalar
notation,x or X will denote coordinates normal to the front
andy or Y the transverse coordinates. Using the “inner”
(shory and the “outer’(long) scales, we rewrite Eq3) as

w=—yV2h+y'(h). 2 Gh=V -[k(h)V u] - (u-p, p=-V?h+y(h),
(5

II. BASIC EQUATIONS

dh=-V .j, j=—7%kh) V u, (1)

whereV is the 2D gradient operatdr,is the flux,k(h) is the
effective mobility,  is dynamic viscosity, ang is chemical
potential:

The first term in the latter expression accounts for the Gibbs-
Thomson effect;, being the standard surface tension of the e S 0 _ 2o ,
bulk fluid. The second term is disjoining potential, which can 1= ¥ ° (kWVu] = (= p), p==EVhey(h).

be defined as the derivative of the interfacial energy with (6)
respect to the film thicknesg; (h). We assume that there are
no externally imposed forces; e.g., gravity is negligible. This
form is universal for both sharp interface theories with inter-
molecular forces and diffuse interface theories with nomi-  Stable roots ofy’(h)=u, or minima of y(h)—uh, corre-
nally definedh; all that varies is the form of the disjoining spond to stable stationary values of the film thickness. Most
potential and the effective mobility/™k(h). We shall work  commonly, there is a single solution corresponding to a pre-
with the standard mobility functiok(h)=§h3, which corre-  cursor layer. Sincey'(h)=0 ath— o, this layer may be in
sponds to Stokes flow with no slip; possible corrections dueequilibrium with bulk fluid at a suitable value gf. A less

to slip or activated creep do not change further results siggommon but interesting situation is the existence of more

Ill. STATIONARY FRONTS

nificantly. than one stable finite solutions. A suitable formgfh) is
If the liquid is volatile, the volume is not conserved, and the Sharma potentigb] combining van der Waals and polar
Eq. (1) is modified to interactions:
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FIG. 1. The Sharma potentiéB) with x=0.85. The dashed line

marks the Maxwell construction leved,, FIG. 2. Dependence of the stationary film thickness on the pa-

rametery. The two branches of the solid curve show the values of
hf, and the dashed line shows the intermediate unstable lsate

Y (h)=-Qch3+ Qe (7)  Inset: dependences(x).
The dimensionless form using as the thickness scale and ) )
q=Q./d® as the energy density scale is The alternative stationary stateSmerge at the lower end of
s o N this interval, while at the upper erg diverges(see Fig. 2
Y'(h)=-h7+xe™, x=d"Qy/Qs. (8) The stationary front profile is computed most easily in the

“phase plane” representation, usings an independent and

In a certain range of the parameter there are two stable . . .
g b e p=h’(x) as a dependent variable. Integrating E2).yields

roots of v'(h)=u at a fixed level of chemical potential
(Fig. 1). Under these conditions, the liquid film may separate NN - -

into domains with alternative stable valubsh,. The do- p(h) = £32Vy(h) = v(hy) + pe(h =), 1D
main boundaries are set into motion during evaporation, conand the front profile is expressed in an implicit form
densation, or coarsening. In the absence of bulk fluid, there is

no asymptotic contact angle in the Young-Laplace sense, and x(h) = ifh () = AtD) + h— O 2%h. (12
JE hg S S S '

the “droplets”™—i.e., “thick” film domains—are shaped like
pancakes rather than spherical caps. Both thin and “thick”
films may fall into a nanoscopic range, as they indeed do infhe originx=0 may be arbitrary, but to be definite, we have
the experiments of Lipson and his gro{ip-4] where the chosen it to coincide with the unstable intermediate solution
ratio of the two thicknesses is @(10'). When the liquid hg. Two typical front profiles are shown in Fig. 3. The front
volume is large, both thin and thick-film domains may be inbecomes strongly asymmetric at the upper end of the bista-
equilibrium with bulk fluid—i.e., a layer of macroscopic bility interval, and its width increases, as the approach to the
thicknessh— oo, Although the latter is formally unstable, ki-
netics of rupture may be practically frozen due to negligible
disjoining potential at macroscopic distances.

A straight-line stationary front separating domains with
two alternative stable values=h; verifies the stationary
reaction-diffusion equation

h'(x) = ¥'(h) + =0, ©

with the asymptotic conditione=h; at x— +c. When the

liqguid mass is conserved, a single planar interface cannol 8
propagate; therefore Maxwell construction should be reachec®
by adjusting chemical potential. The equilibrium value

= us is obtained by multiplying Eq9) by h’(x) and integrat- 6 0.68
ing across the front. The differential term vanishes upon in-
tegration, while the integral of the algebraic part yields the
Maxwell condition

10

__vh) = ¥hy)

= 10
Ms h;-—h; (10
This, together withug=1v'(h%), defines the three unknowns -50 0 50 102 150200 230 300
us, hi. Stationary fronts exist in the interval
3(e/d*< y<€?/8 or, approximately, 0.6398 y<0.9236. FIG. 3. The stationary front profiles for=0.86 andy=0.68.
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stationary valuén; slows down at the thick side. This can be P
seen as a gradual crossover from the flat film to the macro-
scopic droplet regime g¢>€?/8. One should keep in mind
that the length scale in Fig. 3 is set by the scale of molecular
interactiongsee Sec. )| so that the front remains narrow on
the macroscopic scale even yatnot far below the limiting
value. In the following, we restrict to the bistability region
specific for the Sharma model and assume that the drople
size far exceeds the width of the front. 0.0001

0.01

0.001

IV. INNER SOLUTION X
0.65 0.7 0.75 0.8 0.85 0.9
A. Fluxes and mobility of the front

. . . FIG. 4. Dependence of effective diffusivities in thigapper
Across a narrow front, the film thickness switches be-Curva and “thick’- (lower curve film domains on the parametgr

tween the two alternative values corresponding to the same
constant value of chemical potential. The latter is constant
everywhere when the two “phases” are at equilibrium, while
under nonequilibrium conditions it varies on a longie ™)
scale. Problems containing widely separated scales should be
solved by matching expansions in timaer region(localized  yields the material balance relation
at the fronj and theouter regions spreading out to the do- R R
mains where the film thickness is almost constant. Evapora- c(h*-h7)=—-k(h")n -Vu*+kh)n -Vu =j"-j.
tion takes place in the outer domains and can be neglected in (16)
a narrow front region. The front may be set into motion
under the action of a weak gradient of chemical potentiaHeren is the normal to the frondirected in the same way as
developing as a result of evaporation. The multiscale exparthe x axis). The right-hand sidéRHS) of Eq. (16) is the
sion approach is suitable to track slow motion of the front atdifference of the fluxes on the two sid¢5 driven by the
times far exceeding the characteristic relaxation tifpgo a  gradients of chemical potential in the outer regions. This
stationary front profile. integral condition defines therefore the speed of local inter-
We shall allow the front to be weakly curved with a cur- face displacement required to ensure mass conservation.
vature radius 0D(e%). The equations in the inner region can  Since the variable part gf is restricted in the front region
be written then in thaligned comoving frameBy conven- o O(e), the film thickness in the matching regions may de-
tion, the x axis is directed normally to the nominal front viate from the equilibrium values;(us) by no more than
position in such a way that the film thickness is lower to theO(e). Linearizingy’ (h), the fluxesj* can be expressed there-
left. The characteristic scale along this direction is®@)  fore asj*=-D*n-Vh?, whereD*=k(hf)y"(h%) are effective
short scale, while the coordinage parallel to the front is diffusivities. It is notable that, in spite of a strong depen-
scaled bye™. We suppose that the curvature radius is ofgence of mobility orh, the effective diffusivity turns out to
O(e™®); then, the curvature is written as when measured pe Jarger in thahin-film domain(see Fig. 4 The mass flux

on the short inner scale. The curvature is positive when thenrough the front is constant and is given by either of the
thin film domain is convex. Inasmuch as the front region isequivalent expressions

assumed to be locally at equilibrium, the front is expected to
move under the influence of long-scale changes of chemical
potential. Therefore the propagation speed should be measur-
able on a long scal&/T, and can be written agc. The
chemical potential within the front region should differ from
the Maxwell construction byO(e) and is expressed gg

= ust ey Using this in Eq(5) and expanding also the film
thicknessh=hy+eh,+..., weobtain, at the first order

Integrating Eq(13) and using the matching conditions

pi(X) = € ot =n -Vt = - (15

*hg - ih?

—ji=ch+k(h)n -Vt =che - j#=—=>——
hs_hs

17

B. Solvability condition and outer limit

It remains to determine the first-order correction to the

dy[k(hg) 1 ()] + chy(x) =0, (13)  interfacial chemical potential and the related values of the
film thicknessh* at the matching locations on both sides of
- w1 =h{(X) + kh{(x) = y"(hg)h;. (14)  theinterface. For this purpose, HG3) is integrated twice to

ield
The solutions of the inner equations should be matched e¥c

x— o0 with the outer solutions, which we denote @¥X), _ X j1+ chy(x)
h*(X). The matching point should lie at a distance from the pa(X) = "Ll_f k(ho(X))

front that is large on the inner but small on the outer scale; 0

the result must be independent of a precise matching positiohhe integration constant; = u4(X,) has to be determined by
within this range. using the above expression in EG4) and computing the

dx. (18)
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solvability condition of this linear inhomogeneous equation.

The positionx, is arbitrary and should fall out of the final
result.
The linear operator T y"(hy(x)) in Eqg. (14) is self-

PHYSICAL REVIEW E 70, 021601(2004)

,ui = Iu,s+ ’y"(hg)(hi - h:) (24)

V. QUASISTATIONARY SOLUTIONS

adjoint and has a zero eigenvalue corresponding to the trans-

lational Goldstone modky(x). Multiplying Eq. (14) by h{(x)
and integrating yields

wi(hg =hg) =j1Jo+¢J1 — KT, (19

where the integralg, 7, depend on the stationary front pro-

file only:
hg
f p(h)dh,
h

I= fw [hg(x)]%dx = (20)

L) 'J@.F
‘ﬂ'lﬁxh“”dxﬁmkam&»di" < Mo
hy) —

— =~ dh- | ——dh=7,-JT,.
h® p(h)k(h) hg p(hyk(h)

-
——dh
p(hk(h)

(21)

The valueh®=h(x,) can be chosen to coincide with the un-
stable intermediate stationary solutibd) but this is not nec-
essary, as any value within the intervak< h® < hZ will fit as
well.

A. Outer solution and matching

The film evaporates when the ambient chemical potential
u® drops below the prevailing chemical potential in the
film—i.e. the Maxwell construction leveks. Evaporation
taking place in the outer regions is described by E).
written in the long-scale coordinates. Assuming:=u°
-us=0(e), the changes of chemical potential are restricted
to O(e) also in the outer domains, so tH#t remain close to
the two stationary values. When|A | is sufficiently small,
evaporation is slowed down to such a level that evolution is
quasistationary. Then the time derivative in LHS of E).is
negligible, and it reduces, at leading order, to the inhomoge-
neous Helmholtz equation

ki'%ZMi_'_MO_Mi:O, (25)
wherek*=k(hg). This equation has to be solved in both outer
domains to find a relation between the fluyésand the val-
ues of chemical potential at the front. The problem is closed
by applying the matching conditiof22).

Equation(25) can be solved as a Dirichlet problem, set-
ting u*(I')=u*, wherelI" denotes the instantaneous position

The integralZ is recognized as dimensionless line tensionof the front andu® is as yet unknown chemical potential on
or energy per unit length of the front. The dependence of theither side of the front. Once the solution is found, the fluxes

excess chemical potential on curvature in Ek) expresses

j* are computed. The chemical potential close to the front—

a 2D analog of the Gibbs-Thomson relation, while the otheii.e., at a distanceX<1 along the normah to I', which is
two terms give dynamic corrections due to the flux throughsmall on the outer scale—is computed by expanding the so-

the interface.
The two values of chemical potentiaf or film thickness

lution in Taylor series, and the first-order expansion should
match the last term in E@22). The remaining constant terms

h* to be used as interfacial boundary conditions for the outegield two matching conditions for computing?:
equation are obtained by matching the outer limit of the in-

ner solution with the inner limit of the outer solution. The
limit of the inner solution(18) at x— *x is

im pg(X) = g + €T 5= L+ (X= Xo)dyu™,  (22)

X—*oo

where we have used E¢l7) and separated the converging
integrals.7 5, defined by Eq(21), and
}dx

,sz[ 1 1
o

o Lk(ho(x)  k(hE)
1 1

J o1 {
w0 p(h) [ k(h)  k(ht)
This formula, together with Eq$16), (17), and(19), yields

(23)

L Ti=he To

s=%]"

ji

+ o T 0—_Ki

(hs_hs) hs_hs

_ hthiTo-heTy kI

¥ " — - —.
(hs_hs)z hs_hs

-

(26)

If the fluxesj* are expressed througlf using an appropriate
Green’s function, Eq(26) reduces to an integral equation
defining the the local values of chemical potential. Once the
fluxes on the front are known, the local propagation speed is
computed with the help of Eq16). Successive positions of
the front can be tracked by shifting it in accordance to the
computed values. Following the evolution of the front in this
way requires, of course, solving the integral equations at

local relations between the values of chemical potential angach time step. Simpler explicit solutions, which can be re-
fluxes on both sides of the front, which can serve as theolved analytically to the end, are obtained for symmetric
boundary conditions for outer equations. One can check bgrrangements further in this section.

differentiating the integralsy;, K. with respect to the vari-
able limit that the limiting value ofu(x) is indeed indepen-
dent ofx, (which can be now set to zeyor h°. The respec-

B. Straight-line front

tive limits h* can be obtained using the near-equiliborium  Consider a stationary solution of E®5) corresponding

linearized relation

to a straight-line front ak=0. The general solution is
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a
X
FIG. 5. Dependence of the speed of a straight-line front per unit 0
chemical potential difference/Au, on the parametey.
_ -0.05
,ut = ,uo +C* exp(+ XIVKE). (27)
The constant€* should be obtained by matching the inner % -0.1 0.9
limit of this expression with the outer lim{€2) of the inner H :
solution, where the fluxegt=+\k*C* are evaluated using _0.15
Eq. (27). The last term in Eq(22) matches the first-order
expansion of Eq(27): 0.86
— -0.2
Xu® = Xyu*™ = F CXIVKE. 0 2 4 6 8 10
- . . . () a
The remaining constant terms yield two matching conditions
for computingC*: FIG. 6. The coefficients in the linear dependeri@8) of the
o + speed of the circular “pancake” boundary on the chemical potential
Ap+Ct= Ci\e’F J1=hs Jo " Jo e difference at two different values of the parameter
+ -2 + -
(hs - hs) hs - hs
N T -hTE same way as in the preceding subsection using the matching
+C k™ (hi h—)ZS (298 condition(28) at the frontr=a, where one should set
S - S — ,'_ I |
"= VK@K, jT=-VkKy(ak), k=-a™t.

The dependence of the ratio/Ax on the parametery
obtained by solving these two linear equations is shown inrhe problem is solved analytically, but the resulting ex-
Fig. 5. The speed is positive—i.e., the thin film advances—pressions are too cumbersome and the results can better as-
whenAu<0. A slowdown aty close to the upper limit is sessed graphically. The front speed is expressed by a linear
due to increasing capacity of the thick film. Since the equivelation

librium thickness decreases on the thick side where-

comes more negative, the film profile develops a bump on c=fo(@ +fr(@Au. (30

the thick side during evaporation. Whap. > 0—i.e., during

. i . : The dependence of both coefficients anis qualitatively
condensation—the profile near the front is monotonic.

similar for all values ofy within the bistability intervalsee
Fig. 6). Notably, the front speethcreaseswith growing ra-
C. “Pancake” and “hole” dius, in accordange to obseryations of Leizgrebal. [3,4].

_ , , _ , The dependence is monotonic at lafde|, while at smaller
Circularly symmetric solutions are applicable to |solatedJAM| the speed passes a maximum at a certain radies

droplets, “pancakes”, or holes removed from other simila Fig. 7).
objects,. as well as from any bouno_laries, at a distance far "1 increase of the front propagation speed méams
exceeding the characteristic horizontal scalle:.d3’2/ limited sensg that “large droplets evaporate faster,” as the
VBm—i.e., unity in the long-scale dimensionless units of Eq.ijje of Ref. [3] states. This is, in essence, a consequence
(25). The stationary solution of Eq25) corresponding t0 & of the “bulk” evaporation from the interior of the droplet,
circular thick-film “pancake” of a radius immersed in an  \yhich has no analog in conventional evaporation of 3D drop-
infinite thin layer is lets. The effect disappears when flux through the boundary
b 0, T —— 0, - = lays a larger role in evaporation of “thick” domains. One
w = ClolrK), 7= w4 CRrK), - (29) Earil seen f?om a simple cF;IcuIation that, if the evaporation
where r is the radial coordinate antl, K, are modified rate per unit area were constant, the shrinkage rate following
Bessel functions. The constar@@$ should be obtained in the from the material balance would beattit=<a. The actual
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FIG. 7. The dependence of the speed of the circular boundary or 0.3

the “pancake” radius ag=0.9 and different values oAu. The
latter change fromAu=-0.5x 1072 for the lower curve toAu -0.325}
=-2x 1072 for the upper curve with the increment X3.073,

-0.35}
. . . . . —0.375f
radial dependence is weaker than linear, which can be attrib
uted to slower evaporation from larger droplets, which arez 0.4} 0.9

closer to equilibrium with the ambient vapor phase in their 0. 425t
interior. The total evaporation timacreaseswith radius, as
it must do, since even a large droplet becomes small before
disappearing altogether. Nevertheless, smaller droplets ar ~0-475f
less disadvantaged here than in a usual coarsening proce
when the front speed increases with increasing curvature. (b)
For an opposite arrangement—a thin “hole” of a radius
immersed in an infinite thick layer—the stationary solution FIG. 8. The coefficients in the linear dependeridd) of the

-0.45¢f

a

of Eq. (25) is speed of the circular “hole” boundary on the chemical potential
0. — o — difference at two different values of the parameger
"= u”+ CKo(rIVKY), p™=u+Clg(r/NK).  (31)
The constant€* are obtained using the matching condition e 0. ey s C 4k*
(28) at the frontr=a, where one should set pt=pl+ CH e N = P 1+4/1 =) (34)
"=k K@k, jT=- K@k, k=at The fluxesj*=—-k*\*C* are now velocity dependent, so

The coefficients in the linear dependen@@) of the propa- that these expressions have to be solved together with Eq.

gation speed on chemical potential difference are shown i116), and the algebraic structure of the matching conditions
Fig. 8. The dependence of the critical radaysof an incipi- (26) becomes very cumbersome. Fortunately, the dependence

ent hole nucleating during evaporation an is shown in  On Ax remains linear, and the implicit dependentsg/(c)

Fig. 9. can be obtained analytically, albeit in a form not fit for a
human eye. Two typical curves are shown in Fig. 10. A
VI. BEYOND QUASISTATIONARITY graphical comparison with the quasistationary solution in the
A. Solution in a comoving frame )
The quasistationary approximation becomes inadequatt
when the front propagation speed increases. Then the nor -0.005} 0.68
stationary equatio6) has to be solved in the outer regions.
Assuming as before th#&f remain close to the two station- -0.01¢
ary valuesh; and using the equilibrium relatio®4), the o 415t 0.9
outer equations can be rewritten as <
- -0.02}
[y"(h*)] g =KV 20 + u® = u*, (32)
. . . . . -0.025}
For a straight-line front, this equation can be solved in the
comoving frame propagating with an as yet unknown speec
c. It is rewritten then as 0 2 4 s 6 8 10
At st 0 *_
Cuy + K +pu-ut=0, 33
#x Fxx ™ B R (33 FIG. 9. The dependence of the critical radagf a hole nucle-
wheret=c/y"(h;). The general solution is ating during onAu at two different values of the parameter
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FIG. 10. The propagation speed computed in the comoving FIG. 11. The curvature correction to the front propagation
frame as a function oAu at two different values of the parameter speed computed in the comoving frame as a function @fat two
x- Inset: the ratio of propagation speed computed in the comovinglifferent values of the parametgr Inset: blowup near the origin.
frame to that computed in the quasistationary approximation. The front is unstable whea> 0.

inset shows that the difference between the propagation The long-scale instability can be studied in the comoving
speed computed in the comoving frame and that computed iftame using Eq(33) corrected by taking into account front
the quasistationary approximation remains within a few pereurvature, which is assumed to be snealén on the extended
centage points whedu is within the same range as the scale

difference betweep and the equilibrium chemical potential P . 0o 4

for the bulk fluid. This can serve as an indication of reliabil- Crax + K- (uxx = kp™) + p” = = = 0. (39

ity of the above results for the “pancake” and “hole” con- The |ocal front propagation speed, as wellgsand j*, is
figurations, which do not admit a comoving formulation of expanded ink<1. The curvature correction to the front
the outer problem and leave full dynamic simulation as thepropagation speed is presentedcass, + ¢k, wherec, is the
only alternative to the quasistationary solution. ~ speed of a straight-line front evaluated in the preceding sub-
~ The nonlinear character of treAw) dependence, which - gection. The first-order correctid@is computed by using the

is characteristic to the comoving frame computations, befirst-order solution of Eq(35) in the matching conditions at
comes qualitatively important at high speeds. There is gne front(16) and(26) expanded likewise to the first order in
maximum propagation speed &f.<<0, but it is achieved at .. The problem is solved analytically along the same lines as

very high potential differences, far beyond the instability in the preceding subsection, producing awesome expressions
threshold to be computed in the next subsection. The nonlinhandied by computer algebra.

earities are interrelated with changes in the flux through the The front is unstable when the curvature correciiois

interfacej;. At relevant small propagation speeds, up to andyositive. The instability is observed & <0 (i.e., during
beyond the instability limit, the flux is directed during evapo- eyaporatiopin an interval limited both from below and from
rgtlon towards the .thln.—fllm domam, implying a higher effi- above; atAx>0 (condensationthe front is always stable.
ciency of evaporation in the thin layer. The curve&(Au) for two chosen values of are shown in
Fig. 11. The onset of instability is observed at rather low
propagation speeds, and the front stabilizes again at higher
speeds ofAul, as, apparently, perturbations are swept under
A straight-line front may become unstable to transversdy the propagating front. It is possible, however, that other
perturbations. Since the front is neutrally stable to translainstabilities, which we do not investigate here, become rel-
tions, the onset of instability is most likely to occur in a evant at high speeds. The valuesdf| andc, at the lower
long-scalemode. We consider a straight-line front param-limit of zigzag instability are plotted as functions gfin Fig.
etrized by the coordinaté and denote the instantaneous dis-12. A full dispersion relation, including both transverse in-
placement of the front from its unperturbed position alongstabilities at finite wavelength and oscillatory instabilities,
the X axis directed towards the region occupied by the thickcan be obtained using the same approach as described above,
film as (Y, T). The inner front solution is assumed to remain but rather extensive computations are needed to determine
quasistationary, while instability is developing or decaying inthe instability limits.
the outer domains; therefore the outieng) scale is suitable
for stability analysis. As long as the amplitude of the pertur-
bation is much smaller than its wavelength, the normal vec-
tor defining the direction of the front propagation is almost The above theory is more similar technically to the mac-
parallel to theX axis and the propagation speed is expressedoscopic dynamic theory of phase transitions than to a com-
as {r=c. In the same approximation, the curvature is givenmon description of thin fluid films. Although the background
by k=—={yv. equations providing the physical basis of mobility are of hy-

B. Zigzag instability

VII. CONCLUSIONS
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0.0014rF for numerical simulations, though due to the nature of the
0 0012l problem, all expressions are inevitably cumbersome and the
A solution has to be computer aided both at derivation and
0.001r s assessment stage.
S 0. poosl Two principal results have to emphasized here. First, the
é o oooel anomalous dependence of the prop_agation speed on th_e cur-
4 vature of the boundary between thin and “thick” domains,
0.0004} e which, in accordance to the experimef8,4], depresses
o oozl coaisening of th'e_ dropiet size distribution. _Sec;ond, the iiature
' of zigzag instability, which bears more similarity to Mullins-
ok . . . . Sekerka[14] rather than Rayleigh instability and is not
0.5 0.7 075 0.8 0.8 0.9 linked to the formation of a “ridge,” inevitably present dur-

x ing evaporation both under stable and unstable conditions.
FIG. 12. The values of the chemical potential differefsg ~ SINC€ NO ridge exists during condensation, the ridge forma-
and propagation speed of the straight-line frapat the lower limit  tion can be viewed as a necessary but not sufficient condition
of zigzag instability as functions of. for instability. More studies are needed to investigate a cross-
over from the “two-phase” behavior studied here to dynam-
drodynamic origin, the dynamics is defined here in terms ofcS of @ contact line between a thin precursor and a macro-
motion of a relatively sharp “interphase” boundafyonty ~ Scopic fluid layer, but the “two-phase” model appears to
separating the two alternative thermodynamically stablé€XPress in the most clear form the specific features of the
states of the film. The dynamic phase transition theory®XPeriments of Lipson and his group.
though providing the basic methods, cannot guide intuition
in this problem, where the dynamics stroi"igly _depend_s on the ACKNOWLEDGMENTS
presence of “bulk” evaporation from the interior of thin and
“thick” domains and the disparity of mobility coefficients  This work has been supported by the Israel Science Foun-
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