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The coexistence of film domains of different thickness in an evaporating film of a polar liquid on a solid
substrate is studied using the multiscale expansion technique. The propagation speed of a straight-line front is
computed both in the quasistationary approximation and in the comoving frame. The limit of long-scale zigzag
instability is computed. The instability is observed during evaporation only and exists in a range of propagation
velocities bounded both from below and from above; during condensation, the propagating front is always
stable. Computations for a circular front yield a critical nucleation radius for a thin film and confirm the
anomalous dependence of the evaporation rate on the droplet radius observed in recent experiments.
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I. INTRODUCTION

A series of experiments by Lipson and his group has re-
vealed complex behavior during dry-out of thin films of a
polar fluid (water) on an atomically smooth mica surface
[1–4]. The volatile film in contact with unsaturated vapor is
bound to the substrate by both van der Waals and polar
forces, which may combine to enable two alternative stable
film thicknesses, both falling in a nanoscopic range. Coexist-
ing thin and “thick” film domains have been indeed detected
in the experiment. Many unusual features of pattern forma-
tion during evaporation may be attributed to the specific dy-
namics of boundaries between these domains.

Bistable equilibrium film thicknesses can be modeled by
the Sharma potential[5] combining van der Waals and polar
interactions between the fluid and substrate. Within the bista-
bility range, thedynamicsof a film can be described in terms
of “spinodal decomposition” into two stable states. In the
intermediate-thickness range, a flat interface becomes un-
stable. The nonlinear development of instabilities leading to
nucleation of “holes” and separation into “thick” and thin
domains has been studied numerically in the two-
dimensional(2D) lubrication approximation[6,7] and found
to follow a pattern common to many phase transition phe-
nomena. Evaporation triggers spinodal decomposition after
bringing the film thickness into the unstable range. “Dry”
regions nucleating during evaporation are actually thin-film
domains, and their subsequent growth can be seen as the
motion of a front separating the thin- and “thick”-film do-
mains. This relatively sharp moving front is usually identi-
fied as a “contact-line” region, although no definite equilib-
rium contact angle exists in the absence of a macroscopic
fluid layer.

A driven contact line is apt to be unstable to transverse
perturbations, which may cause fingering and rivulet forma-
tion, and are ultimately responsible for the formation of com-
plex dewetting patterns in the course of evaporation. Such
instabilities are common to contact lines driven by various
forces—e.g., gravity[8–10], Marangoni force[11] or dewet-
ting [12]—and are commonly accompanied by the formation
of a ridge on the fluid interface behind the front. Transverse
instability in evaporating layers was also attributed to the

ridge formation[2,13]. It was conjectured that the ridge is
destabilized through a mechanism analogous to the Rayleigh
instability of a liquid cylinder. Numerical simulations using
the common lubrication approximation[13] reproduced the
zigzag instability of the front, which, indeed, appeared to be
correlated, in the limited range of parameters where the
simulations were carried out, with the ridge formation. Nev-
ertheless, the connection between the instability and ridge
formation, as well as the analogy to the Rayleigh instability,
is open to discussion and isnot supported by the results to be
described below: we shall see that a ridge isalwayspresent
in an evaporating film in the model we use, even when the
front is stable.

Another interesting phenomenon observed in recent ex-
periments[3,4] is the coexistence of droplets of different
size, defying a common notion of faster evaporation of
smaller droplets due to the Gibbs-Thomson effect. Both the
anomalous dependence of the shrinkage rate on the droplet
radius and the contact-line dynamics different from that ob-
served in macroscopic films will be explained here as a con-
sequence of the coexistence of thin- and “thick”-film do-
mains. We shall consider the late stages of evolution of the
film following spinodal decomposition and the formation of
fronts. The analogy between the coexistence of domains with
two alternative thicknesses and common phase transitions in
3D suggests applying the methods of the theory of phase
transitions[14], based on the dynamics of propagation of the
interphase boundaries. The mathematical structure of dy-
namic phase transition models, based on the Cahn-Hilliard
equation[15], on the one side, and thin-liquid-film equations,
on the other side, is not so much different, as the latter re-
duce in the lubrication approximation to a generalized Cahn-
Hilliard equation[16–18]. A substantial difference, making
the liquid-film equations technically more difficult, is in the
hydrodynamic origin of the effective mobility coefficient,
making it strongly dependent on the “order parameter”—film
thickness(see Sec. II). This, combined with enormous dis-
parity of scales of the bulk fluid and a “precursor layer”
where molecular interactions between the fluid and substrate
is predominant, presents great theoretical and computational
challenges(see[18,19] for recent reviews and[20] for spe-
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cific application to dewetting and spinodal decomposition in
liquid films).

The dynamical problem involving a front between a thin
and a “thick” film is essentially easier than that of coexist-
ence of a thin film and macroscopic(bulk) fluid, since one
can operate with nearly constant, though different, mobilities
in the two domains and treat the boundary between them
using the multiscale expansion technique of the dynamic
theory of phase transitions[21–23]. Although the Sharma
model gives a smooth transition between bistability and thin-
film–bulk-fluid coexistence(see Sec. III) and has been also
applied to experiments involving bulk menisci rather than
coexisting domains[24], it is the bistability region where the
essential features of Lipson’s experiments are brought for-
ward in a most transparent way. Applying the multiscale ex-
pansion technique allows us to solve the problem analyti-
cally for the essential symmetric shapes of the moving front
separating the thin and “thick” domains. We shall use it to
investigate the properties of solutions, including long-scale
zigzag instability, in a wide range of parameters, as well as to
give a quantitative measure of the anomalous dependence of
the evaporation rate on the droplet radius.

II. BASIC EQUATIONS

The evolution equation of anonvolatileliquid film with a
large aspect ratio written in the lubrication approximation
has the form of a generalized Cahn-Hilliard equation for the
conserved “order parameter”h—the film thickness
[17,18,25]. When the film thickness is indefinite, as in dif-
fuse interface theory, it is defined as an appropriate nominal
value, usually as the position of the Gibbs surface[26]. The
dynamic equations follow then from the conservation law:

]th = − = · j , j = − h−1kshd = m, s1d

where= is the 2D gradient operator,j is the flux,kshd is the
effective mobility,h is dynamic viscosity, andm is chemical
potential:

m = − g0¹
2h + g8shd. s2d

The first term in the latter expression accounts for the Gibbs-
Thomson effect,g0 being the standard surface tension of the
bulk fluid. The second term is disjoining potential, which can
be defined as the derivative of the interfacial energy with
respect to the film thickness,g8shd. We assume that there are
no externally imposed forces; e.g., gravity is negligible. This
form is universal for both sharp interface theories with inter-
molecular forces and diffuse interface theories with nomi-
nally definedh; all that varies is the form of the disjoining
potential and the effective mobilityh−1kshd. We shall work
with the standard mobility functionkshd= 1

3h3, which corre-
sponds to Stokes flow with no slip; possible corrections due
to slip or activated creep do not change further results sig-
nificantly.

If the liquid is volatile, the volume is not conserved, and
Eq. (1) is modified to

]th = h−1 = · fkshd = mg − bsm − m0d, s3d

wherem0 is chemical potential of the ambient vapor phase
andb is an effective rate constant; the effective mobilitykshd
remains unchanged if viscosity of the vapor phase can be
neglected.

A convenient dimensionless form of Eq.(3) can be ob-
tained by choosing a characteristic decay lengthd of disjoin-
ing potential (to be specified below) as the scale of film
thicknessh and a characteristic energy densityq of molecu-
lar interactions between the fluid and substrate as the scale of
chemical potentialm. The horizontal coordinatesx and time
can be scaled in two ways. Ashort horizontal length scale
l =Îg0d/q is fixed by the balance between disjoining poten-
tial and surface tension, and determines the extent of a region
where the interface may be strongly curved due to interaction
with the substrate. Another horizontal scaleL=d3/2/Îbh is
determined by the balance between advective mass transport
along the film(with kshd~d3) and evaporation. This scale is
long when evaporation is slow. The respective time scales
are

Tl =
l2h

d2q
=

g0h

dq2 , TL =
L2h

d2q
=

d

bq
.

Evolution isquasistationaryif it proceeds on a slower time
scale.

The scale ratio

e =
l

L
=Î Tl

TL
=

1

d
Îbg0h

q
s4d

is the small parameter of the problem. We shall retain the
same notation for the rescaled film thickness, chemical po-
tential, and functions ofh, but to avoid confusion, distin-
guish between the short-scale dimensionless coordinates and
time, x, t and the long-scale variablesX, T, as well as be-

tween the respective gradient operators= and =̂. In scalar
notation,x or X will denote coordinates normal to the front
and y or Y the transverse coordinates. Using the “inner”
(short) and the “outer”(long) scales, we rewrite Eq.(3) as

]th = = · fkshd = mg − e2sm − m0d, m = − ¹2h + g8shd,

s5d

]Th = =̂ · fkshd=̂mg − sm − m0d, m = − e2¹̂2h + g8shd.

s6d

III. STATIONARY FRONTS

Stable roots ofg8shd=m, or minima ofgshd−mh, corre-
spond to stable stationary values of the film thickness. Most
commonly, there is a single solution corresponding to a pre-
cursor layer. Sinceg8shd=0 at h→`, this layer may be in
equilibrium with bulk fluid at a suitable value ofm. A less
common but interesting situation is the existence of more
than one stable finite solutions. A suitable form ofg8shd is
the Sharma potential[5] combining van der Waals and polar
interactions:
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g8shd = − Qsh
−3 + Qpe

−h/d. s7d

The dimensionless form usingd as the thickness scale and
q=Qs/d

3 as the energy density scale is

g8shd = − h−3 + xe−h, x = d3Qp/Qs. s8d

In a certain range of the parameterx, there are two stable
roots of g8shd=m at a fixed level of chemical potentialm
(Fig. 1). Under these conditions, the liquid film may separate
into domains with alternative stable valuesh=h±. The do-
main boundaries are set into motion during evaporation, con-
densation, or coarsening. In the absence of bulk fluid, there is
no asymptotic contact angle in the Young-Laplace sense, and
the “droplets”—i.e., “thick” film domains—are shaped like
pancakes rather than spherical caps. Both thin and “thick”
films may fall into a nanoscopic range, as they indeed do in
the experiments of Lipson and his group[1–4] where the
ratio of the two thicknesses is ofOs101d. When the liquid
volume is large, both thin and thick-film domains may be in
equilibrium with bulk fluid—i.e., a layer of macroscopic
thicknessh→`. Although the latter is formally unstable, ki-
netics of rupture may be practically frozen due to negligible
disjoining potential at macroscopic distances.

A straight-line stationary front separating domains with
two alternative stable valuesh=hs

± verifies the stationary
reaction-diffusion equation

h9sxd − g8shd + m = 0, s9d

with the asymptotic conditionsh=hs
± at x→ ±`. When the

liquid mass is conserved, a single planar interface cannot
propagate; therefore Maxwell construction should be reached
by adjusting chemical potential. The equilibrium valuem
=ms is obtained by multiplying Eq.(9) by h8sxd and integrat-
ing across the front. The differential term vanishes upon in-
tegration, while the integral of the algebraic part yields the
Maxwell condition

ms = −
gshs

+d − gshs
−d

hs
+ − hs

− . s10d

This, together withms=g8shs
±d, defines the three unknowns

ms, hs
±. Stationary fronts exist in the interval

3se/4d4,x,e2/8 or, approximately, 0.6398,x,0.9236.

The alternative stationary stateshs
± merge at the lower end of

this interval, while at the upper endhs
+ diverges(see Fig. 2).

The stationary front profile is computed most easily in the
“phase plane” representation, usingh as an independent and
p=h8sxd as a dependent variable. Integrating Eq.(9) yields

pshd = ±Î2Îgshd − gshs
−d + mssh − hs

−d, s11d

and the front profile is expressed in an implicit form

xshd =
1
Î2
E

hs
0

h

fgshd − gshs
−d + mssh − hs

−dg−1/2dh. s12d

The originx=0 may be arbitrary, but to be definite, we have
chosen it to coincide with the unstable intermediate solution
hs

0. Two typical front profiles are shown in Fig. 3. The front
becomes strongly asymmetric at the upper end of the bista-
bility interval, and its width increases, as the approach to the

FIG. 1. The Sharma potential(8) with x=0.85. The dashed line
marks the Maxwell construction levelms.

FIG. 2. Dependence of the stationary film thickness on the pa-
rameterx. The two branches of the solid curve show the values of
hs

±, and the dashed line shows the intermediate unstable statehs
0.

Inset: dependencemssxd.

FIG. 3. The stationary front profiles forx=0.86 andx=0.68.
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stationary valuehs
+ slows down at the thick side. This can be

seen as a gradual crossover from the flat film to the macro-
scopic droplet regime atx.e2/8. One should keep in mind
that the length scale in Fig. 3 is set by the scale of molecular
interactions(see Sec. II), so that the front remains narrow on
the macroscopic scale even atx not far below the limiting
value. In the following, we restrict to the bistability region
specific for the Sharma model and assume that the droplet
size far exceeds the width of the front.

IV. INNER SOLUTION

A. Fluxes and mobility of the front

Across a narrow front, the film thickness switches be-
tween the two alternative values corresponding to the same
constant value of chemical potential. The latter is constant
everywhere when the two “phases” are at equilibrium, while
under nonequilibrium conditions it varies on a longerOse−1d
scale. Problems containing widely separated scales should be
solved by matching expansions in theinner region(localized
at the front) and theouter regions spreading out to the do-
mains where the film thickness is almost constant. Evapora-
tion takes place in the outer domains and can be neglected in
a narrow front region. The front may be set into motion
under the action of a weak gradient of chemical potential
developing as a result of evaporation. The multiscale expan-
sion approach is suitable to track slow motion of the front at
times far exceeding the characteristic relaxation timeTl to a
stationary front profile.

We shall allow the front to be weakly curved with a cur-
vature radius ofOse−1d. The equations in the inner region can
be written then in thealigned comoving frame. By conven-
tion, the x axis is directed normally to the nominal front
position in such a way that the film thickness is lower to the
left. The characteristic scale along this direction is theOs1d
short scale, while the coordinatey parallel to the front is
scaled bye−1. We suppose that the curvature radius is of
Ose−1d; then, the curvature is written asek when measured
on the short inner scale. The curvature is positive when the
thin film domain is convex. Inasmuch as the front region is
assumed to be locally at equilibrium, the front is expected to
move under the influence of long-scale changes of chemical
potential. Therefore the propagation speed should be measur-
able on a long scaleL /TL and can be written asec. The
chemical potential within the front region should differ from
the Maxwell construction byOsed and is expressed asm
=ms+em1. Using this in Eq.(5) and expanding also the film
thickness,h=h0+eh1+. . ., weobtain, at the first order

dxfksh0dm18sxdg + ch08sxd = 0, s13d

− m1 = h19sxd + kh08sxd − g 9sh0dh1. s14d

The solutions of the inner equations should be matched at
x→±` with the outer solutions, which we denote asm±sXd,
h±sXd. The matching point should lie at a distance from the
front that is large on the inner but small on the outer scale;
the result must be independent of a precise matching position
within this range.

Integrating Eq.(13) and using the matching conditions

m18sxd = e−1]xm
± = n · =̂m± ; − j± s15d

yields the material balance relation

csh+ − h−d = − ksh+dn · =̂m+ + ksh−dn · =̂m− ; j+ − j−.

s16d

Heren is the normal to the front(directed in the same way as
the x axis). The right-hand side(RHS) of Eq. (16) is the
difference of the fluxes on the two sidesj± driven by the
gradients of chemical potential in the outer regions. This
integral condition defines therefore the speed of local inter-
face displacement required to ensure mass conservation.

Since the variable part ofm is restricted in the front region
to Osed, the film thickness in the matching regions may de-
viate from the equilibrium valueshs

±smsd by no more than
Osed. Linearizingg8shd, the fluxesj± can be expressed there-

fore as j±=−D±n ·=̂h±, whereD±=kshs
±dg 9shs

±d are effective
diffusivities. It is notable that, in spite of a strong depen-
dence of mobility onh, the effective diffusivity turns out to
be larger in thethin-film domain(see Fig. 4). The mass flux
through the front is constant and is given by either of the
equivalent expressions

− j1 = chs
± + kshs

±dn · =̂m± = chs
± − j± =

j+hs
− − j−hs

+

hs
+ − hs

− .

s17d

B. Solvability condition and outer limit

It remains to determine the first-order correction to the
interfacial chemical potential and the related values of the
film thicknessh± at the matching locations on both sides of
the interface. For this purpose, Eq.(13) is integrated twice to
yield

m1sxd = m̄1 −E
x0

x j1 + ch0sxd
k„h0sxd…

dx. s18d

The integration constantm̄1=m1sx0d has to be determined by
using the above expression in Eq.(14) and computing the

FIG. 4. Dependence of effective diffusivities in thin-(upper
curve) and “thick”- (lower curve) film domains on the parameterx.
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solvability condition of this linear inhomogeneous equation.
The positionx0 is arbitrary and should fall out of the final
result.

The linear operator dx
2−g 9(h0sxd) in Eq. (14) is self-

adjoint and has a zero eigenvalue corresponding to the trans-
lational Goldstone modeh08sxd. Multiplying Eq. (14) by h08sxd
and integrating yields

m̄1shs
+ − hs

−d = j1J0 + cJ1 − kI, s19d

where the integralsI, Jk depend on the stationary front pro-
file only:

I =E
−`

`

fh08sxdg2dx =E
hs

−

hs
+

pshddh, s20d

Jk =E
−`

`

h08sxddxE
x0

x h0
ksx̃d

k„h0sx̃d…
dx̃ =E

hs
−

hs
+

dhE
h0

h h̃k

psh̃dksh̃d
dh̃

=E
h0

hs
+ h̃kshs

+ − h̃d

psh̃dksh̃d
dh̃ −E

hs
−

h0 h̃ksh̃ − hs
−d

psh̃dksh̃d
dh̃ ; J k

+ − J k
−.

s21d

The valueh0=hsx0d can be chosen to coincide with the un-
stable intermediate stationary solutionhs

0, but this is not nec-
essary, as any value within the intervalhs

−,h0,hs
+ will fit as

well.
The integralI is recognized as dimensionless line tension

or energy per unit length of the front. The dependence of the
excess chemical potential on curvature in Eq.(19) expresses
a 2D analog of the Gibbs-Thomson relation, while the other
two terms give dynamic corrections due to the flux through
the interface.

The two values of chemical potentialm± or film thickness
h± to be used as interfacial boundary conditions for the outer
equation are obtained by matching the outer limit of the in-
ner solution with the inner limit of the outer solution. The
limit of the inner solution(18) at x→±` is

lim
x→±`

m1sxd = m̄1 + cJ 0
± − j±K± + sx − x0d]xm

±, s22d

where we have used Eq.(17) and separated the converging
integralsJ 0

±, defined by Eq.(21), and

K± =E
x0

±` F 1

k„h0sxd…
−

1

kshs
±dGdx

=E
hs

0

hs
± 1

pshdF 1

kshd
−

1

kshs
±dGdh. s23d

This formula, together with Eqs.(16), (17), and(19), yields
local relations between the values of chemical potential and
fluxes on both sides of the front, which can serve as the
boundary conditions for outer equations. One can check by
differentiating the integralsJ k

±, K± with respect to the vari-
able limit that the limiting value ofmsxd is indeed indepen-
dent ofx0 (which can be now set to zero) or h0. The respec-
tive limits h± can be obtained using the near-equilibrium
linearized relation

m± = ms + g 9shs
±dsh± − hs

±d. s24d

V. QUASISTATIONARY SOLUTIONS

A. Outer solution and matching

The film evaporates when the ambient chemical potential
m0 drops below the prevailing chemical potential in the
film—i.e. the Maxwell construction levelms. Evaporation
taking place in the outer regions is described by Eq.(6)
written in the long-scale coordinates. AssumingDm=m0

−ms=Osed, the changes of chemical potential are restricted
to Osed also in the outer domains, so thath± remain close to
the two stationary valueshs

±. WhenuDmu is sufficiently small,
evaporation is slowed down to such a level that evolution is
quasistationary. Then the time derivative in LHS of Eq.(6) is
negligible, and it reduces, at leading order, to the inhomoge-
neous Helmholtz equation

k±¹̂2m± + m0 − m± = 0, s25d

wherek±=kshs
±d. This equation has to be solved in both outer

domains to find a relation between the fluxesj± and the val-
ues of chemical potential at the front. The problem is closed
by applying the matching condition(22).

Equation(25) can be solved as a Dirichlet problem, set-
ting m±sGd=m̄±, whereG denotes the instantaneous position
of the front andm̄± is as yet unknown chemical potential on
either side of the front. Once the solution is found, the fluxes
j± are computed. The chemical potential close to the front—
i.e., at a distanceX!1 along the normaln to G, which is
small on the outer scale—is computed by expanding the so-
lution in Taylor series, and the first-order expansion should
match the last term in Eq.(22). The remaining constant terms
yield two matching conditions for computingm̄±:

m̄± − ms = ± j±FJ1 − hs
7J0

shs
+ − hs

−d2 +
J 0

±

hs
+ − hs

− − K±G
7 j7

J1 + hs
+J 0

− − hs
−J 0

+

shs
+ − hs

−d2 −
kI

hs
+ − hs

− . s26d

If the fluxesj± are expressed throughm̄± using an appropriate
Green’s function, Eq.(26) reduces to an integral equation
defining the the local values of chemical potential. Once the
fluxes on the front are known, the local propagation speed is
computed with the help of Eq.(16). Successive positions of
the front can be tracked by shifting it in accordance to the
computed values. Following the evolution of the front in this
way requires, of course, solving the integral equations at
each time step. Simpler explicit solutions, which can be re-
solved analytically to the end, are obtained for symmetric
arrangements further in this section.

B. Straight-line front

Consider a stationary solution of Eq.(25) corresponding
to a straight-line front atX=0. The general solution is
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m± = m0 + C± exps7X/Îk±d. s27d

The constantsC± should be obtained by matching the inner
limit of this expression with the outer limit(22) of the inner
solution, where the fluxesj±=±Îk±C± are evaluated using
Eq. (27). The last term in Eq.(22) matches the first-order
expansion of Eq.(27):

x]xm
± = X]Xm± = 7C±X/Îk±.

The remaining constant terms yield two matching conditions
for computingC±:

Dm + C± = C±Îk±FJ1 − hs
7J0

shs
+ − hs

−d2 +
J 0

±

hs
+ − hs

− − K±G
+ C7Îk7

J1 + hs
+J 0

− − hs
−J 0

+

shs
+ − hs

−d2 . s28d

The dependence of the ratioc/Dm on the parameterx
obtained by solving these two linear equations is shown in
Fig. 5. The speed is positive—i.e., the thin film advances—
when Dm,0. A slowdown atx close to the upper limit is
due to increasing capacity of the thick film. Since the equi-
librium thickness decreases on the thick side whenm be-
comes more negative, the film profile develops a bump on
the thick side during evaporation. WhenDm.0—i.e., during
condensation—the profile near the front is monotonic.

C. “Pancake” and “hole”

Circularly symmetric solutions are applicable to isolated
droplets, “pancakes”, or holes removed from other similar
objects, as well as from any boundaries, at a distance far
exceeding the characteristic horizontal scaleL=d3/2/
Îbh—i.e., unity in the long-scale dimensionless units of Eq.
(25). The stationary solution of Eq.(25) corresponding to a
circular thick-film “pancake” of a radiusa immersed in an
infinite thin layer is

m+ = m0 + C+I0sr/Îk+d, m− = m0 + C−K0sr/Îk−d, s29d

where r is the radial coordinate andI0, K0 are modified
Bessel functions. The constantsC± should be obtained in the

same way as in the preceding subsection using the matching
condition (28) at the frontr =a, where one should set

j+ = Îk+I1sa/Îk+d, j− = − Îk−K1sa/Îk−d, k = − a−1.

The problem is solved analytically, but the resulting ex-
pressions are too cumbersome and the results can better as-
sessed graphically. The front speed is expressed by a linear
relation

c = f0sad + f1sadDm. s30d

The dependence of both coefficients ona is qualitatively
similar for all values ofx within the bistability interval(see
Fig. 6). Notably, the front speedincreaseswith growing ra-
dius, in accordance to observations of Leizersonet al. [3,4].
The dependence is monotonic at largeuDmu, while at smaller
uDmu the speed passes a maximum at a certain radius(see
Fig. 7).

The increase of the front propagation speed means(in a
limited sense) that “large droplets evaporate faster,” as the
title of Ref. [3] states. This is, in essence, a consequence
of the “bulk” evaporation from the interior of the droplet,
which has no analog in conventional evaporation of 3D drop-
lets. The effect disappears when flux through the boundary
plays a larger role in evaporation of “thick” domains. One
can seen from a simple calculation that, if the evaporation
rate per unit area were constant, the shrinkage rate following
from the material balance would be da/dt~a. The actual

FIG. 5. Dependence of the speed of a straight-line front per unit
chemical potential difference,c/Dm, on the parameterx.

FIG. 6. The coefficients in the linear dependence(30) of the
speed of the circular “pancake” boundary on the chemical potential
difference at two different values of the parameterx.
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radial dependence is weaker than linear, which can be attrib-
uted to slower evaporation from larger droplets, which are
closer to equilibrium with the ambient vapor phase in their
interior. The total evaporation timeincreaseswith radius, as
it must do, since even a large droplet becomes small before
disappearing altogether. Nevertheless, smaller droplets are
less disadvantaged here than in a usual coarsening process
when the front speed increases with increasing curvature.

For an opposite arrangement—a thin “hole” of a radiusa
immersed in an infinite thick layer—the stationary solution
of Eq. (25) is

m+ = m0 + C+K0sr/Îk+d, m− = m0 + C−I0sr/Îk−d. s31d

The constantsC± are obtained using the matching condition
(28) at the frontr =a, where one should set

j+ = Îk+K1sa/Îk+d, j− = − Îk−I1sa/Îk−d, k = a−1.

The coefficients in the linear dependence(30) of the propa-
gation speed on chemical potential difference are shown in
Fig. 8. The dependence of the critical radiusac of an incipi-
ent hole nucleating during evaporation onDm is shown in
Fig. 9.

VI. BEYOND QUASISTATIONARITY

A. Solution in a comoving frame

The quasistationary approximation becomes inadequate
when the front propagation speed increases. Then the non-
stationary equation(6) has to be solved in the outer regions.
Assuming as before thath± remain close to the two station-
ary valueshs

± and using the equilibrium relation(24), the
outer equations can be rewritten as

fg 9sh±dg−1]tm
± = k±¹̂2m± + m0 − m±. s32d

For a straight-line front, this equation can be solved in the
comoving frame propagating with an as yet unknown speed
c. It is rewritten then as

ĉmX
± + k±m̂XX

± + m0 − m± = 0, s33d

whereĉ=c/g 9shs
±d. The general solution is

m± = m0 + C±el±X, l± = −
ĉ

2k±S1 ±Î1 +
4k±

ĉ2 D . s34d

The fluxes j±=−k±l±C± are now velocity dependent, so
that these expressions have to be solved together with Eq.
(16), and the algebraic structure of the matching conditions
(26) becomes very cumbersome. Fortunately, the dependence
on Dm remains linear, and the implicit dependenceDmscd
can be obtained analytically, albeit in a form not fit for a
human eye. Two typical curves are shown in Fig. 10. A
graphical comparison with the quasistationary solution in the

FIG. 7. The dependence of the speed of the circular boundary on
the “pancake” radius atx=0.9 and different values ofDm. The
latter change fromDm=−0.5310−3 for the lower curve toDm
=−2310−3 for the upper curve with the increment 0.5310−3.

FIG. 8. The coefficients in the linear dependence(30) of the
speed of the circular “hole” boundary on the chemical potential
difference at two different values of the parameterx.

FIG. 9. The dependence of the critical radiusac of a hole nucle-
ating during onDm at two different values of the parameterx.
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inset shows that the difference between the propagation
speed computed in the comoving frame and that computed in
the quasistationary approximation remains within a few per-
centage points whenDm is within the same range as the
difference betweenms and the equilibrium chemical potential
for the bulk fluid. This can serve as an indication of reliabil-
ity of the above results for the “pancake” and “hole” con-
figurations, which do not admit a comoving formulation of
the outer problem and leave full dynamic simulation as the
only alternative to the quasistationary solution.

The nonlinear character of thecsDmd dependence, which
is characteristic to the comoving frame computations, be-
comes qualitatively important at high speeds. There is a
maximum propagation speed atDm,0, but it is achieved at
very high potential differences, far beyond the instability
threshold to be computed in the next subsection. The nonlin-
earities are interrelated with changes in the flux through the
interfacej1. At relevant small propagation speeds, up to and
beyond the instability limit, the flux is directed during evapo-
ration towards the thin-film domain, implying a higher effi-
ciency of evaporation in the thin layer.

B. Zigzag instability

A straight-line front may become unstable to transverse
perturbations. Since the front is neutrally stable to transla-
tions, the onset of instability is most likely to occur in a
long-scalemode. We consider a straight-line front param-
etrized by the coordinateY and denote the instantaneous dis-
placement of the front from its unperturbed position along
the X axis directed towards the region occupied by the thick
film aszsY,Td. The inner front solution is assumed to remain
quasistationary, while instability is developing or decaying in
the outer domains; therefore the outer(long) scale is suitable
for stability analysis. As long as the amplitude of the pertur-
bation is much smaller than its wavelength, the normal vec-
tor defining the direction of the front propagation is almost
parallel to theX axis and the propagation speed is expressed
as zT=c. In the same approximation, the curvature is given
by k=−zYY.

The long-scale instability can be studied in the comoving
frame using Eq.(33) corrected by taking into account front
curvature, which is assumed to be smalleven on the extended
scale:

ĉmX
± + k±sm̂XX

± − km±d + m0 − m± = 0. s35d

The local front propagation speed, as well asm± and j±, is
expanded ink!1. The curvature correction to the front
propagation speed is presented asc=c0+ c̃k, wherec0 is the
speed of a straight-line front evaluated in the preceding sub-
section. The first-order correctionc̃ is computed by using the
first-order solution of Eq.(35) in the matching conditions at
the front(16) and(26) expanded likewise to the first order in
k. The problem is solved analytically along the same lines as
in the preceding subsection, producing awesome expressions
handled by computer algebra.

The front is unstable when the curvature correctionc̃ is
positive. The instability is observed atDm,0 (i.e., during
evaporation) in an interval limited both from below and from
above; atDm.0 (condensation) the front is always stable.
The curvesc̃sDmd for two chosen values ofx are shown in
Fig. 11. The onset of instability is observed at rather low
propagation speeds, and the front stabilizes again at higher
speeds oruDmu, as, apparently, perturbations are swept under
by the propagating front. It is possible, however, that other
instabilities, which we do not investigate here, become rel-
evant at high speeds. The values ofuDmu andc0 at the lower
limit of zigzag instability are plotted as functions ofx in Fig.
12. A full dispersion relation, including both transverse in-
stabilities at finite wavelength and oscillatory instabilities,
can be obtained using the same approach as described above,
but rather extensive computations are needed to determine
the instability limits.

VII. CONCLUSIONS

The above theory is more similar technically to the mac-
roscopic dynamic theory of phase transitions than to a com-
mon description of thin fluid films. Although the background
equations providing the physical basis of mobility are of hy-

FIG. 10. The propagation speed computed in the comoving
frame as a function ofDm at two different values of the parameter
x. Inset: the ratio of propagation speed computed in the comoving
frame to that computed in the quasistationary approximation.

FIG. 11. The curvature correctionc̃ to the front propagation
speed computed in the comoving frame as a function ofDm at two
different values of the parameterx. Inset: blowup near the origin.
The front is unstable whenc̃.0.
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drodynamic origin, the dynamics is defined here in terms of
motion of a relatively sharp “interphase” boundary(front)
separating the two alternative thermodynamically stable
states of the film. The dynamic phase transition theory,
though providing the basic methods, cannot guide intuition
in this problem, where the dynamics strongly depends on the
presence of “bulk” evaporation from the interior of thin and
“thick” domains and the disparity of mobility coefficients
and effective diffusivities.

Our ability to solve the problem analytically with the help
of the multiscale perturbation technique helps us to investi-
gate a far wider range of conditions than would be accessible

for numerical simulations, though due to the nature of the
problem, all expressions are inevitably cumbersome and the
solution has to be computer aided both at derivation and
assessment stage.

Two principal results have to emphasized here. First, the
anomalous dependence of the propagation speed on the cur-
vature of the boundary between thin and “thick” domains,
which, in accordance to the experiment[3,4], depresses
coarsening of the droplet size distribution. Second, the nature
of zigzag instability, which bears more similarity to Mullins-
Sekerka [14] rather than Rayleigh instability and is not
linked to the formation of a “ridge,” inevitably present dur-
ing evaporation both under stable and unstable conditions.
Since no ridge exists during condensation, the ridge forma-
tion can be viewed as a necessary but not sufficient condition
for instability. More studies are needed to investigate a cross-
over from the “two-phase” behavior studied here to dynam-
ics of a contact line between a thin precursor and a macro-
scopic fluid layer, but the “two-phase” model appears to
express in the most clear form the specific features of the
experiments of Lipson and his group.
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